
Control Flow Checking or Not? (for Soft Errors)

Aviral Shrivastava
School of Computing, Informatics and Decision Systems Engineering

Arizona State University
Aviral.Shrivastava@asu.edu

1. INTRODUCTION
Control Flow Checking (CFC) techniques were proposed to

provide efficient protection from soft errors. The main idea is
that most soft errors will eventually manifest as errors in the se-
quence of instruction execution. Therefore, just by making sure
that the sequence of instructions executed (or the control flow
of the program) is correct, then significant protection can be
achieved. Note that a CFC technique by itself does not provide
any protection – it merely provides the capability of detecting
errors. Combined with a scheme to recover from errors (e.g.,
restart from the beginning; or in the case of regularly created
checkpoints, continue from the last checkpoint when an error
is detected), CFC techniques can provide protection from soft
errors. In this paper, since we are interested in estimating the
protection achieved by CFC techniques, we assume that there
is some (but it does not matter which one) scheme to recover
from the control flow error detected.

The arsenal of control flow based soft error protection tech-
niques span across design layers from hardware [3, 6, 9], soft-
ware [1, 8, 11, 13], and hardware-software hybrid techniques
[4, 10, 14]. CFC techniques are attractive since they can often
be implemented with much less overhead (as compared to full
scale redundancy) and arguably provide a decent error cover-
age. Papers proposing CFC techniques perform fault injection
tests and conclude that their technique is quite effective in com-
bating soft errors.

In this work, we use the metric of Vulnerability [7] to quan-
titatively estimate the protection achieved by existing Control
Flow Checking techniques. A bit is vulnerable in a certain cycle
of execution, if a fault in it may cause a wrong result, other-
wise, it is not vulnerable. Adding up the number of vulnerable
bits in each cycle of the execution of a program, gives us the
total vulnerability of the program execution. Higher vulnera-
bility of program execution implies that the program execution
is more susceptible to soft errors. The metric of vulnerability
is more comprehensive, and does not require detailed compute-
intensive fault injection experiments. In fact, the vulnerability
of a program execution can be estimated in a single simulation
run by tracking the events on each bit of the processor, and

.

counting the number of vulnerable bits.
We estimate the vulnerability before and after the applica-

tion of several CFC techniques. The basic idea is to analyze
each vulnerable < bit, cycle > in the original execution, and
determine the control flow errors that it can cause. If any of
the generated control flow error can be detected by the CFC,
then the < bit, cycle > is deemed to be not vulnerable in the
presence of CFC.

Our results reveal that existing CFC techniques not only do
not protect execution from soft errors, but in fact incur addi-
tional power and performance overheads. In particular, soft-
ware only CFC protection schemes (CFCSS [8], CFCSS+NA
[2], CEDA [11]) increase system vulnerability by 18% to 21%
with 17% to 38% performance overhead. Hybrid CFC protec-
tion (CFEDC [4]) increases vulnerability by 5%. Even though
the vulnerability remains almost the same for hardware-only
CFC protection (CFCET [9]), they incur overheads of design
cost, area, and power due to the hardware modifications re-
quired for their implementation.

2. REFERENCES
[1] Alkhalifa, Z., Nair, V. S. S., Krishnamurthy, N., and Abraham, J. A. Design and

Evaluation of System-Level Checks for On-Line Control Flow Error Detection.
IEEE Trans. Parallel Distrib. Syst. 10, 6 (June 1999), 627–641.

[2] Chao, W., Zhongchuan, F., Hongsong, C., Wei, B., Bin, L., Lin, C., Zexu, Z., Yuying, W., and
Gang, C. CFCSS without Aliasing for SPARC Architecture. In International
Conference on Computer and Information Technology (CIT) (29 2010-july 1 2010),
pp. 2094 –2100.

[3] Eifert, J., and Shen, J. Processor Monitoring Using Asynchronous Signatured
Instruction Streams. In Twenty-Fifth International Symposium onFault-Tolerant
Computing (jun 1995), p. 106.

[4] Farazmand, N., Fazeli, M., and Miremadi, S. FEDC: Control Flow Error Detection
and Correction for Embedded Systems without Program Interruption. In Third
International Conference on Availability, Reliability and Security (march 2008), pp. 33
–38.

[5] Goloubeva, O., Rebaudengo, M., Sonza Reorda, M., and Violante, M. Soft-error
detection using control flow assertions. In IEEE International Symposium on Defect
and Fault Tolerance in VLSI Systems (nov. 2003), pp. 581 – 588.

[6] Madeira, H., and Silva, J. On-line signature learning and checking: experimental
evaluation. In Proceedings of 5th Annual European Computer Conference (may 1991),
pp. 642 –646.

[7] Mukherjee, S. S., Weaver, C., Emer, J., Reinhardt, S. K., and Austin, T. A Systematic
Methodology to Compute the Architectural Vulnerability Factors for a
High-Performance Microprocessor. IEEE/ACM International Symposium on
Microarchitecture 0 (2003), 29.

[8] Oh, N., Shirvani, P., and McCluskey, E. Control-flow checking by software
signatures. IEEE Transactions on Reliability 51, 1 (mar 2002), 111 –122.

[9] Rajabzadeh, A., and Miremadi, S. CFCET: A Hardware-based Control Flow
Checking Technique in COTS Processors using Execution Tracing.
Microelectronics Reliability 46, 5 (2006), 959–972.

[10] Saxena, N. R., and McCluskey, W. K. Control-Flow Checking Using Watchdog
Assists and Extended-Precision Checksums. IEEE Transactions on Computing 39, 4
(Apr. 1990), 554–559.

[11] Vemu, R., and Abraham, J. CEDA: Control-Flow Error Detection Using Assertions.
IEEE Transactions on Computers 60, 9 (Sept. 2011), 1233–1245.

[12] Vemu, R., Gurumurthy, S., and Abraham, J. ACCE: Automatic correction of
control-flow errors. In Test Conference, 2007. ITC 2007. IEEE International (oct.
2007), pp. 1 –10.

[13] Venkatasubramanian, R., Hayes, J., and Murray, B. Low-cost on-line fault detection
using control flow assertions. In On-Line Testing Symposium, 2003. IOLTS 2003. 9th
IEEE (july 2003), pp. 137 – 143.

[14] Wilken, K., and Shen, J. P. Continuous Signature Monitoring: Efficient
Concurrent-Detection of Processor Control Errors. In Proceedings of the 1988
International Conference on Test (Washington, DC, USA, 1988), ITC’88, IEEE
Computer Society, pp. 914–925.


