
LLFI: A High-Level Fault Injection Framework for
Evaluating Software Error Resilience Techniques

Karthik Pattabiraman
Electrical and Computer Engineering, University of British Columbia (UBC)

{karthikp}ece.ubc.edu

Abstract
Fault-injection has traditionally been performed at lower levels

of the system stack, such as in the microarchitectural or circuit
levels. Such injection techniques are however difficult to use for
evaluating the coverage of software error resilience mechanisms.
In this talk, I present LLFI, a high-level fault injection mechanism
for evaluating the coverage of software resilience mechanisms.
LLFI is highly flexible, easy to use and allows mapping between
the application’s code and fault propagation. It is also accurate
with regard to assembly-code level fault injection for Silent Data
Corruption (SDC) causing errors.
Keywords Reliability, Compiler, Modeling

Fault-injection is the de-facto method for evaluating the error
resilience of a system. Fault-injection involves the perturbation of
the system in a controlled manner so as to study the effect of the
introduced fault, and to test the resilience of the system to the
fault. Traditionally, fault injection has been performed at the micro-
architectural or circuit level, as this is where (hardware) errors can
be easily modelled. Further, error resilience mechanisms have been
traditionally implemented in the hardware, and hence injecting
faults at the microarchitectural or circuit levels made sense.

However, recently there has been a trend towards incorporating
software error resilience mechanisms at the application level [1–
3, 5–8]. There are two reasons for this trend. First, many errors do
not propagate up the system stack to the application, and hence it
is much more cost-effective to protect the application from the few
errors that do propagate. Second, it is possible to take into account
the properties and requirements of applications when designing er-
ror resilience mechanisms for them. For example, a video process-
ing application is much more error resilient than an application that
processes financial transactions, and hence requires lower levels of
protection. Therefore, application-level resilience techniques that
consider the application’s properties can be much more efficient
than generic hardware-level techniques.

The main challenge with application-level error resilience
mechanisms is that there is a lack of robust fault-injection frame-
works for evaluating their coverage. This is because unlike generic
mechanisms, application-level mechanisms are intricately tied to
the properties of the application they protect, and hence their cov-
erage needs to be evaluated in the context of the application’s code.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESWEEK’14, October 12 - 17 2014, New Delhi, India.
Copyright © 2014 ACM 978-1-4503-3050-3/14/10. . . $15.00.
http://dx.doi.org/10.1145/2656106.2656127

Further, fault-injection approaches at the microarchitectural or cir-
cuit levels are often too slow to evaluate the end-to-end coverage of
applications as they are implemented in microarchitectural or cir-
cuit simulators. Finally, performing fault injection at lower levels
of the system stack often provides very little insight to the applica-
tion developer on why the resilience mechanism does not provide
the desired coverage, and to debug the resilience mechanism itself.

In this talk, I will present LLFI, a high-level fault-injection
framework to evaluate the coverage of application-level error-
resilience techniques. LLFI1 integrates with the widely used LLVM
compiler [4], and provides easy mapping between the application’s
LLVM intermediate representation (IR) and its error resilience
properties. Further, it allows programmers to control the injection
of faults into selected program segments and/or data regions, and
provides a programmable interface to choose different fault-models
for the program. Finally, LLFI traces the propagation of faults in
the program (after they have been injected) to provide insights into
how and why faults propagate in the program, and whether the
faults are detected by the software resilience mechanisms. LLFI is
easy to install and use, and has been tested on a wide variety of
platforms and architectures.

We have compared the accuracy of LLFI with other application-
level fault injectors that operate at the assembly code levels of
programs. We find that LLFI is accurate in evaluating the effects of
Silent Data Corruption (SDC) causing errors compared to assembly
level injectors, but not for crash-causing errors [9]. This result holds
across different categories of instructions in the program. I will
conclude by outlining some of the challenges and opportunities in
the area of high-level fault injection frameworks.

References
[1] J. Cong and K. Gururaj. Assuring application-level correctness against soft errors.

In ICCAD, 2011.
[2] M. de Kruijf, S. Nomura, and K. Sankaralingam. Relax: An architectural frame-

work for software recovery of hardware faults. In ISCA., 2010.
[3] S. Feng, S. Gupta, A. Ansari, and S. Mahlke. Shoestring: probabilistic soft error

reliability on the cheap. In ASPLOS, 2010.
[4] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong program

analysis & transformation. In CGO., 2004.
[5] K. Lee, A. Shrivastava, I. Issenin, N. Dutt, and N. Venkatasubramanian. Miti-

gating soft error failures for multimedia applications by selective data protection.
CASES ’06, pages 411–420, 2006.

[6] Q. Lu, K. Pattabiraman, M. S. Gupta, and J. A. Rivers. Sdctune: A model for
predicting the sdc proneness of an application for configurable protection. In
CASES, 2014.

[7] M. Shafique, S. Rehman, P. V. Aceituno, and J. Henkel. Exploiting program-level
masking and error propagation for constrained reliability optimization. In DAC,
2013.

[8] A. Thomas and K. Pattabiraman. Error detector placement for soft computation.
In DSN, 2013.

[9] J. Wei, A. Thomas, G. Li, and K. Pattabiraman. Quantifying the accuracy of
high-level fault injection techniques for hardware faults. In DSN, 2014.

1 Available at https://github.com/DependableSystemsLab/LLFI

