

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

Reliable Computing in the Dark/Dim Silicon Era

Siddharth Garg
New York University

sg175@nyu.edu

Abstract
Although technology scaling enables the integration of more
transistors on a chip, it has been observed that the power con-
sumption per transistor has, in the recent past, not been scaling
proportionally with transistor area. As a consequence, given a
fixed power budget, not all transistors on the chip can be powered
on simultaneously, resulting in the so-called “dark silicon” prob-
lem [1]. The parts of the chip that are not powered on are referred
to as “dark.” An alternative view of a dark silicon chip is to think
of it as overprovisioned with more transistors than the power
budget would mandate and in this context, the question that arises
is whether overprovisioning the chip provides any advantages that
make-up for the design and manufacturing cost of doing so.

The traditional
view is that chips
can be overprovi-
sioned with heter-
ogeneous compu-
ting resources
(different types of
processing cores,

application-
specific accelera-
tors, etc.) and the
on-chip diversity
can be exploited at
run-time depend-

ing on the application needs. A second view is that even a chip
with overprovisioned homogeneous cores (i.e., all processing
cores on the chip are micro-architecturally identical) can be lever-
aged in the dark silicon era. This is for several reasons:
x Functional yield: faulty cores can be kept dark without com-

promising performance.
x Parametric yield: core-to-core variations in power and per-

formance due to manufacturing variations can be exploited to
maximize parametric yield.

x Near-threshold operation: the overprovisioned cores can be
powered on at lower voltage and frequency levels, providing
greater parallelism.

In this talk, I will discuss the parametric yield and near-threshold
voltage aspects, focusing particularly on the implications for
predictable and reliable computing.

Addressing Parametric Yield Using Cherry-picking. Due to the
impact of manufacturing process variations, even identical cores
on a chip can have very different power consumption and maxi-
mum operating frequency values. For an over-provisioned homo-
geneous chip multi-processor, one can then pick the optimum
subset of cores that maximize performance within a power budget
[2]. In particular, for a multi-threaded application, the sequential
components can be mapped to the fastest core, while the set of
most power-efficient cores can be used for the parallel compo-
nents. This can be observed in Figure 1, where we note that the
sequential core on a 32-core chip is 5.2% faster than the one on a
16-core chip, since there are 16 extra cores to choose from.

From a compiler perspective, there might be opportunities to
expose the process variation information to the compiler, allowing
it to create low and high power/performance versions of each
thread, with the former being mapped to high power cores, while
the latter being mapped to lower power cores.

Near-threshold Computing and Soft Errors. It might seem, on first
glance, a tempting proposition to power on a potentially large
number of cores at near-threshold voltage and frequency. For
highly parallel applications, it might indeed be beneficial from a
performance perspective to execute many threads, albeit at lower
frequency values. However, we have recently observed that this
comes with a potentially significant cost – increased soft-error
rates [3]. This is because in near-threshold mode, more silicon
area is exposed to soft-errors, and at the same time, because of
low-voltage operation, transistors are more susceptible to particle
strikes. Our preliminary results indicate up to an order of magni-
tude greater likelihood of faults due to soft-errors in the near-
threshold mode.

As before, the compiler can use techniques like instruction dupli-
cation and control-flow checking when executing in near-
threshold mode to mitigate the soft-error issue, but this would
come at significant performance cost.

References
[1] Esmaeilzadeh, Hadi, et al. "Dark silicon and the end of multicore

scaling." Computer Architecture (ISCA), 2011 38th Annual Interna-
tional Symposium on. IEEE, 2011.

[2] Raghunathan, Bharathwaj, et al. "Cherry-picking: exploiting process
variations in dark-silicon homogeneous chip multi-processors." Pro-
ceedings of the Conference on Design, Automation and Test in Eu-
rope. EDA Consortium, 2013.

[3] Shafique, Muhammad, et al. "The EDA Challenges in the Dark Sili-
con Era: Temperature, Reliability, and Variability Perspectives."
Proceedings of the The 51st Annual Design Automation Conference
on Design Automation Conference. ACM, 2014

Figure 1 Scatter plot of power and frequen-
cy for 32 cores on a chip, and which cores
are dark (black) and powered on (red,blue).

