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Abstract  
Although technology scaling enables the integration of more 
transistors on a chip, it has been observed that the power con-
sumption per transistor has, in the recent past, not been scaling 
proportionally with transistor area. As a consequence, given a 
fixed power budget, not all transistors on the chip can be powered 
on simultaneously, resulting in the so-called “dark silicon” prob-
lem [1]. The parts of the chip that are not powered on are referred 
to as “dark.” An alternative view of a dark silicon chip is to think 
of it as overprovisioned with more transistors than the power 
budget would mandate and in this context, the question that arises 
is whether overprovisioning the chip provides any advantages that 
make-up for the design and manufacturing cost of doing so. 

 
The traditional 
view is that chips 
can be overprovi-
sioned with heter-
ogeneous compu-
ting resources 
(different types of 
processing cores, 

application-
specific accelera-
tors, etc.) and the 
on-chip diversity 
can be exploited at 
run-time depend-

ing on the application needs. A second view is that even a chip 
with overprovisioned homogeneous cores (i.e., all processing 
cores on the chip are micro-architecturally identical) can be lever-
aged in the dark silicon era. This is for several reasons: 
x Functional yield: faulty cores can be kept dark without com-

promising performance. 
x Parametric yield: core-to-core variations in power and per-

formance due to manufacturing variations can be exploited to 
maximize parametric yield.  

x Near-threshold operation: the overprovisioned cores can be 
powered on at lower voltage and frequency levels, providing 
greater parallelism. 

 
In this talk, I will discuss the parametric yield and near-threshold 
voltage aspects, focusing particularly on the implications for 
predictable and reliable computing. 

 
Addressing Parametric Yield Using Cherry-picking. Due to the 
impact of manufacturing process variations, even identical cores 
on a chip can have very different power consumption and maxi-
mum operating frequency values. For an over-provisioned homo-
geneous chip multi-processor, one can then pick the optimum 
subset of cores that maximize performance within a power budget 
[2]. In particular, for a multi-threaded application, the sequential 
components can be mapped to the fastest core, while the set of 
most power-efficient cores can be used for the parallel compo-
nents. This can be observed in Figure 1, where we note that the 
sequential core on a 32-core chip is 5.2% faster than the one on a 
16-core chip, since there are 16 extra cores to choose from. 
 
From a compiler perspective, there might be opportunities to 
expose the process variation information to the compiler, allowing 
it to create low and high power/performance versions of each 
thread, with the former being mapped to high power cores, while 
the latter being mapped to lower power cores. 
 
Near-threshold Computing and Soft Errors. It might seem, on first 
glance, a tempting proposition to power on a potentially large 
number of cores at near-threshold voltage and frequency. For 
highly parallel applications, it might indeed be beneficial from a 
performance perspective to execute many threads, albeit at lower 
frequency values. However, we have recently observed that this 
comes with a potentially significant cost – increased soft-error 
rates [3]. This is because in near-threshold mode, more silicon 
area is exposed to soft-errors, and at the same time, because of 
low-voltage operation, transistors are more susceptible to particle 
strikes. Our preliminary results indicate up to an order of magni-
tude greater likelihood of faults due to soft-errors in the near-
threshold mode.  
 
As before, the compiler can use techniques like instruction dupli-
cation and control-flow checking when executing in near-
threshold mode to mitigate the soft-error issue, but this would 
come at significant performance cost.  
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Figure 1 Scatter plot of power and frequen-
cy for 32 cores on a chip, and which cores 
are dark (black) and powered on (red,blue). 


